SOCS1 is a negative regulator of metabolic reprogramming during sepsis.

نویسندگان

  • Annie Rocio Piñeros Alvarez
  • Nicole Glosson-Byers
  • Stephanie Brandt
  • Soujuan Wang
  • Hector Wong
  • Sarah Sturgeon
  • Brian Paul McCarthy
  • Paul R Territo
  • Jose Carlos Alves-Filho
  • C Henrique Serezani
چکیده

Sepsis can induce an overwhelming systemic inflammatory response, resulting in organ damage and death. Suppressor of cytokine signaling 1 (SOCS1) negatively regulates signaling by cytokine receptors and Toll-like receptors (TLRs). However, the cellular targets and molecular mechanisms for SOCS1 activity during polymicrobial sepsis are unknown. To address this, we utilized a cecal ligation and puncture (CLP) model for sepsis; C57BL/6 mice subjected to CLP were then treated with a peptide (iKIR) that binds the SOCS1 kinase inhibitory region (KIR) and blocks its activity. Treatment with iKIR increased CLP-induced mortality, bacterial burden, and inflammatory cytokine production. Myeloid cell-specific SOCS1 deletion (Socs1Δmyel) mice were also more susceptible to sepsis, demonstrating increased mortality, higher bacterial loads, and elevated inflammatory cytokines, compared with Socs1fl littermate controls. These effects were accompanied by macrophage metabolic reprograming, as evidenced by increased lactic acid production and elevated expression of the glycolytic enzymes hexokinase, lactate dehydrogenase A, and glucose transporter 1 in septic Socs1Δmyel mice. Upregulation was dependent on the STAT3/HIF-1α/glycolysis axis, and blocking glycolysis ameliorated increased susceptibility to sepsis in iKIR-treated CLP mice. These results reveal a role of SOCS1 as a regulator of metabolic reprograming that prevents overwhelming inflammatory response and organ damage during sepsis.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

SOCS1/JAB likely mediates the protective effect of cardiotrophin-1 against lipopolysaccharide-induced left ventricular dysfunction in vivo.

BACKGROUND Suppressor of cytokine signaling 1 (SOCS1) is a negative regulator of cytokine signaling whose expression is induced in the rat heart by cardiotrophin-1 (CT-1). Sepsis-induced myocardial depression results from the expression of inducible nitric oxide synthase (iNOS) evoked by inflammatory cytokines. METHODS AND RESULTS The effect of CT-1 on lipopolysaccharide (LPS)-induced cardiac...

متن کامل

SOCS1, a Negative Regulator of Cytokine Signals and TLR Responses, in Human Liver Diseases

Toll-like receptor (TLR) signaling pathways are strictly coordinated by several mechanisms to regulate adequate innate immune responses. Recent lines of evidence indicate that the suppressor of cytokine signaling (SOCS) family proteins, originally identified as negative-feedback regulators in cytokine signaling, are involved in the regulation of TLR-mediated immune responses. SOCS1, a member of...

متن کامل

Inhibition of microRNA-155 alleviates lipopolysaccharide-induced kidney injury in mice

Sepsis is defined as life-threatening organ dysfunction caused by a dysregulated host response to infection. Accumulated evidences suggest that microRNAs (miRNAs) are related with inflammation-associated diseases. The aim of this study is to investigate whether miR-155 is involved in lipopolysaccharide (LPS)-induced kidney injury, and to explore the underlying mechanisms. Mice were intraperiton...

متن کامل

Linkage between Large intergenic non-coding RNA regulator of reprogramming and Stemness State in Samples with Helicobacter pylori Infection of Gastric Cancer Cells

Background: Long noncoding RNAs (lncRNAs), as non-protein coding transcripts, play key roles in tumor progression and stemness state in many malignancies, as their aberrant expression has been found in gastric cancer (GC) as one of the most common cancer worldwide. LINC-ROR (large intergenic noncoding RNA regulator of reprogramming) identified as an involved lncRNA in human malignancies, howeve...

متن کامل

Green tea polyphenol epigallocatechin gallate inhibits cell signaling by inducing SOCS1 gene expression.

Therapeutic effects of green tea involve an inhibitory function of its constituent polyphenol epigallocatechin gallate (EGCG) on cell signaling. The specificity and mechanism(s) by which EGCG inhibits cell signaling have remained unclear. Here, we demonstrate that green tea and EGCG induce suppressor of cytokine signaling 1 (SOCS1) gene expression, a negative regulator of specific cell signalin...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • JCI insight

دوره 2 13  شماره 

صفحات  -

تاریخ انتشار 2017